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Abstract
Media-based event data—i.e., data comprised from reporting by media outlets—are widely used in political
science research.However, eventsof interest (e.g., strikes, protests, conflict) areo�enunderreportedby these
primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent
analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use
of the information o�en available to researchers. Specifically, much of the event data used in the social
sciences is drawn frommultiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore,
we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from
multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of
predictors for the true-eventmodel andeachof themisclassificationmodels characterizingwhether a source
fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and
reporting on an event of interest. Simulations evidence that our technique regularly outperforms current
strategies that either neglect misclassification, the unique features of the data-generating process, or both.
We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa
Database.

1 Introduction
Media-based event data—i.e., data comprised from newspaper, television, or web-based
accounts—are widely used in research in political science, economics, sociology, and geography.
Earl et al. (2004) details the centrality of these data in the research on collective action—e.g., racial
violence, agrarian protest, social movements—arguing that for such issues there is simply “no
other alternative available.” In comparative politics, these data are used in the study of coups,
demonstrations, natural disasters, elections, terrorism, and other forms of political violence.
Research on intrastate conflict, in particular, frequently uses media-reported data to assess
subnational variation in violence and gain greater leverage on the mechanisms which produce
conflict (Weidmann 2016). International Relations research has long used event data to detail the
wide array of political interactions between countries, from disputes to diplomacy (Schrodt and
Gerner 1994). Media-based measures can be particularly important when political actors wish
to conceal their behavior—as frequently occurs, in areas as diverse as human rights violations
and Chinese development finance to Africa (Strange et al. 2013). Studies relying on media-based
data will likely to continue to grow, as these data becomemore abundant and research questions
become increasingly granular (Schrodt 2012).1

Authors’ note: For their helpful comments and suggestions, thanks to Kenneth Benoit, Graeme Blair, Chad Hazlett, Florian
Hollenbach, Idean Salyehan, Nils Weidmann, the reviewers, and the editor(s). Replicationmaterials are available online at
Cook et al. (2016). All inquiries should be sent to the corresponding author at sjcook@tamu.edu

1 Schrodt (2012) provides a partial list of event data projects currently used in political science.
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Despite the broad and frequent use of these data, however, Woolley (2000, p. 177) notes
that “[m]edia sources may not provide good data even though the data are sometimes easily
obtained.” In particular, concerns over measurement error are o�en raised, as news sources
do not report all events.2 The extent of this underreporting is di�icult to assess—as we rarely
possess true population rates—yet, some studies have estimated that nearly half of true events
go unreported. This incomplete or selective reporting is o�en attributed to either a lack of
opportunity during news gathering (e.g., the distance of a reporter to an event) or willingness
during news reporting (e.g., the severity of an event, perceived audience demand, political bias
of the media outlet), resulting in the systematic exclusion of particular events from media and
resultant data.3 Issues that are even further compounded when reporting on any illegal, illicit, or
otherwise socially disapproved behavior—from corruption (e.g., vote buying, bribes ) to conflict
(e.g., coups, repression)—that areo�enof interest in social science. Consequently, data fromthese
reports aremisclassified—wherein some trueevents are codedas zeros—andanalysis su�ers from
bias, with inferences which are sensitive to the choice of the source. Despite wide knowledge of
these limitations, the threat of reporting bias is o�en ignored in applied research utilizing event
count data. Where solutions have been proposed, researchers are advised to “triangulate” their
data—draw from multiple news sources—to reduce the bias introduced from any one source, or
to correct for the bias in estimation by modeling the misclassification (Hug and Wisler 1998; Hug
2003, 2009).
While either of these approaches is preferable to ignoring possible misclassification outright,

we argue that neither is able to fully exploit all of the information commonly possessed
by researchers with media-based event data. Namely, no strategy allows researchers to use
multiple sources of reporting and misclassification-robust estimation. Briefly summarizing
existing approaches, where only one source of (suspected to be incomplete) information is
possible—that is, triangulation cannot be accomplished—we agree that researchers should
use misclassification-robust methods (Copas 1988; Carroll and Pederson 1993; Hausman et al.
1998). Where instead multiple sources of information are available, we agree that this should
also be leveraged. However, the aggregation of these sources only attenuates, not eliminates,
underreporting in the data, meaning additional statistical remedies for misclassification should
still be employed. Yet, as none of the current misclassification-robust estimation strategies are
derived for this kind of multi-source data-generating process, their application to these data will
result in bias or loss of e�iciency. Therefore, we propose a misclassification-robust maximum
likelihood estimator for multiple sources of data, allowing researchers to estimate the extent
of misclassification in each source, and obtain the correct estimates of event of interest. We
further generalize our estimator to allow researchers to estimate models where misclassification
is dependent upon covariates.
While the focus of our discussion centers largely on media-sourced data, our method is more

general than this suggests. Any time a researcher possesses multiple sources of information
(e.g., U.S. Department of State vs. United Nations reports) on a qualitative outcome of interest
our estimator may be of use.4 In the next section we briefly summarize the implications of

2 These issues are widely recognized in a�ected literatures. For example, the literature on civil conflict has had numerous
recent discussions on potential underreporting (Weidmann 2014).

3 See Earl et al. (2004) for a more comprehensive discussion onmedia reporting.
4 As a minimal example, Trumbore and Woo (2014) analyze the conditions which lead states to become narcotic producers
or transit platforms. In their analysis, they utilize data culled from the annual International Narcotics Control Strategy
Reports published annually by the Bureau for International Narcotics and Law Enforcement A�airs of the United States
Department of State. Using our method they could have supplemented this analysis to include the annual World Drug
ReportofUnitedNationsO�iceofDrugControl asa secondsourceand thenestimatedmisclassificationprobabilities—with
di�erent reporting rates a function of the distinct political goals/aims of the two actors (i.e., US vs. UN) generating the
reports. As this example shows, our model is appropriate whenever researchers havemultiple sources of data fromwhich
an indicator of some event can be derived.
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response measurement error in discrete-outcome models. Next, we introduce our multi-source
misclassification estimator. Following that, we outline and present results from Monte Carlo
simulations evaluating our estimator against plausible alternatives. Anticipating our findings,
we show that neglecting misclassification, by estimating a standard probit, never recovers the
true e�ect estimate when there is di�erential misclassification, indicating the clear need to
adopt corrections such as ours.5 We then apply our method to a model of repression using the
Social Conflict in Africa Database. Finally, we detail and discuss extensions of our approach to
more general applied settings—e.g., scaling the estimator for data with many sources, analyzing
nonbinary qualitative outcomes, underreporting in sample selection—before concluding.

2 Measurement Error as Misclassification
Concern over measurement tends to focus predominately on error in predictors rather than error
in responses. In part, this is because classical measurement error in the outcome of a linear
regression “only” increases the variability of fitted lines without otherwise causing bias to the
slope estimates. As discussed in Carroll et al. (2006), this is not the case in discrete-outcome
models, wheremeasurement error ismisclassification; risking not only a loss of precision but also
bias in e�ects estimates. This can take two forms:

(1) Nondi�erential misclassification—when the observed outcome is independent of the
covariates conditional upon the actual outcome, that is, the event predictors do not also
predict classification—induces severe attenuation bias in parameter estimates.6 Whereas,
in linear regression there is no such impact.

(2) If instead there is a relationship between the observed response and themodel predictors,
independent of the true-event risk—i.e., di�erential misclassification—the bias in the e�ect
estimate can be positive or negative depending on the sign and magnitude of the relevant
covariances.

In sum, misclassification in binary-outcome models not only suppresses true relationships—
via attenuation or loss of power—but can also induce false positives through inflated e�ect
estimates.7

To elaborate more formally, consider the familiar latent-variable representation of the binary-
outcomemodel

Y∗ = β0 + β t1X + ε,

with latent-Y∗ mapping onto the observed, censored outcome YT via the standard measurement
equation

YT = 1(Y∗ ≥ 0),

where YT is the true outcome—equal to 1 if an event occurs. This has a probability of response

pr(YT = 1`X) = F (β0 + β t1X). (1)

5 The coverage probabilities for probit are 0.0% in our simulation experiment where there is di�erential misclassification of
approximately 35% in one source and 20% in the other. The details of this analysis are provided below.

6 In a toy simulation shows that with ≈25%misclassification the slope estimate in a logistic regression is less than half of
the true value (0.4 vs. 1.0).

7 Imai and Yamamoto (2010) discusses and evaluates the impact of di�erential measurement error on causal estimation in
survey research, indicating that it can result in sizable overestimation of causal e�ects.
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If, however, some set of outcomes in YT = 1 is coded in Y = 0, or vice versa, such that

pr(Y = 1`YT = 0) + pr(Y = 0`YT = 1) , 0,

there is misclassification. That is, misclassification occurs whenever the outcome vector, Y, used
in analysis, erroneously records some true events as zero and/or some nonevents as one.8

With nondi�erential misclassification, the probability of accurate classification is

pr(Y = 1`YT = 1, X) = pr(Y = 1`YT = 1) = π1,

pr(Y = 0`YT = 0, X) = pr(Y = 0`YT = 0) = π0.

This means that the probability for Y in not given by Equation (1), but instead

pr(Y = 1`X) = (1 − π0) + (π1 + π0 − 1)F (β0 + β t1X), (2)

which equals Equation (1) only if π0 = π1 = 1 (i.e., no misclassification).
As noted above, failing to account formisclassification results in inconsistent and biased e�ect

estimates (Hausman et al. 1998). Therefore, many strategies to address misclassification has
received considerable attention elsewhere (Abrevaya andHausman 1999; Copas 1988; Carroll and
Pederson 1993; Hausman et al. 1998). Two problems persist with these existing remedies. First,
many of these, including those enjoying the widest use currently in political science (Hausman
et al. 1998;Hug2009), simplymaximize someversionof the log-likelihood impliedbyEquation (2).
As noted by Carroll et al. (2006, p. 347), with these estimators “classification probabilities are
only very weakly identified. . . parameters may be identified theoretically but not in any practical
sense.” As such,whenandwherepossible,wewillwant to supply additional information to inform
the misclassification probabilities over what we observe simply in Y.
Second, noneof these approaches is derived explicitly for the type of situationwhichmotivates

our project, that is, several sources of misclassified data. The Hausman et al. (1998) estimator, for
example, is developed for a single misclassified binary outcome, not aggregate data from several
sources erroneously treated as if it were a single binary outcome. As a result, the misapplication
of this estimator to these data mismodels a fundamental feature of the data-generating process,
resulting in a loss of e�iciency or bias. In short, these estimators are designed to handle a di�erent
experimental condition from the one represented by the data considered heretofore. Therefore,
we provide an alternative strategy in the next section.

3 A Multi-source Solution
As discussed in the introduction, misclassification is likely to occur with media-based event data,
where primary- or secondary-source reports fail to include the occurrence of an actual event. To
introduce our method, consider two news outlets, 1 and 2, providing reports, Y1 and Y2, on the
event of interest YT.9 Ultimately, we are interested in

pr(YT = 1`X),

8 We argue that there are at least three causes of misclassification in social phenomena: (i) misrepresentation,
(ii)misreporting, and (iii)miscoding. In the first, agents under observationhave theability andan incentive tomisrepresent
its true type, behavior, or beliefs, and thus will supply inaccurate information. Secondly, misclassification can occur due
to misreporting, wherein true information is revealed and available—e.g., an action occurs—but it is either not observed
or properly recorded. Finally, misclassification can occur when an event is captured by a primary or secondary source, but
miscoding errors occur in the construction of a data set from this, otherwise complete, information.

9 While we focus on the two-source model during elaboration and evaluation, it is easy to extend this to accommodate
additional sources as we show in Section 6.
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whereX is amatrix of predictors of the event. However,wepossess two incomplete reportsY1 , YT
and Y2 , YT, explained by:

pr(Y1 = 1`X, Z1)

pr(Y2 = 1`X, Z2),

where Z1 and Z2 are predictors of the (mis-)reporting of an event (e.g., distance to reporting o�ice)
by that source,whichareotherwiseunrelated toYT. Followingconvention in theapplied literature,
we aggregate these sources to reduce the individual missingness by

Ysum = 1(Y1 + Y2 ≥ 1).

If Ysum = YT, the data are complete and we find that

pr(YT = 1`X, Z1, Z2) = pr(YT = 1`X) = F (β tX), (3)

whereF (·) is specified up to theparameter β . However,whereYsum , YT, we are unable to simplify
as in (3). Thismeans thatwhenobservedoutcomesaremisclassified, fittingEquation (3)will result
in biased estimates of X on YT.
Therefore, we construct an estimator around

ASSUMPTION 1. We make the following assumptions: (a) Y1 and Y2 are independent given
(YT, X, Z1, Z2). (b) Ysum = 1 implies YT = 1 with probability 1. (c) YT = 0 implies that Ysum =

0 = Y1 = Y2 with probability 1.

Less formally, Assumption 1(a) states that the sources of reporting data are conditionally
independent of one another. Assumption 1(b) and Assumption 1(c) jointly indicate that
misclassification in this context is exclusively underreporting.
If we treat Ysum as the response variable, the problem is related to one studied by Copas (1988),

Carroll and Pederson (1993), and Hausman et al. (1998). The misclassification probabilities are

pr(Ysum = 0`YT = 1, X, Z1, Z2) = γ(X, Z1, Z2), (4)

pr(Ysum = 1`YT = 0, X, Z1, Z2) = 0, (5)

where (5) followed from Assumption 1(b). In Hausman et al. (1998) these misclassification
probabilities do not depend of the covariates, and are instead simply an unknown constant
to be estimated.10 Therefore, we generalize Hausman et al. (1998)’s estimator to allow for
misclassification probabilities that are dependent upon the covariates (as shown in Online
Appendix A)

pr(Ysum = 0`X, Z1, Z2) = {1 − γ(X, Z1, Z2)}{1 − F (X, β )} + γ(X, Z1, Z2); (6)

pr(Ysum = 1`X, Z1, Z2) = {1 − γ(X, Z1, Z2)}F (X, β ). (7)

In principle, since the form of F (·) is assumed known, then γ(X, Z1, Z2) is identified nonparametri-
cally. If one assumes a parametric form for γ(·), then maximum likelihood can be employed.
However, thedataarenot (Ysum, X, Z1, Z2), but (Y1, Y2, X, Z1, Z2), that is,wehavemultiple sources

ofdata. As such, theremaybedi�erentmisclassification rates,which is the fundamentaldi�erence

10 Hausman et al. (1998) allude to a generalization of their estimator which would permit the inclusion of exogenous
predictors of the misclassification probabilities, though they never return to fully elaborate on such an approach. In a
follow up work, Abrevaya and Hausman (1999) do devote greater attention to covariate-dependent measurement error in
a semiparametric framework.
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between our estimator and existing approaches. Rather than neglect this information, thereby
failing to use all of the data, we define

α1(X, Z1) = pr(Y1 = 0`YT = 1, X, Z1); (8)

α2(X, Z2) = pr(Y2 = 0`YT = 1, X, Z2). (9)

Here by Assumption 1(b) we have that pr(Y1 = 1`YT = 0, X, Z1) = pr(Y2 = 1`YT = 0, X, Z2) = 0. Then
under Assumption 1(a), it is easy to see that

γ(X, Z1, Z2) = α1(X, Z1)α2(X, Z2). (10)

Indeed, in Online Appendix A, we show the following result.

LEMMA 1. Under Assumption 1,

pr(Y1 = 0, Y2 = 0`X, Z1, Z2) = 1 − F (X, β ) + α1(X, Z1)α2(X, Z2)F (X, β );
pr(Y1 = 0, Y2 = 1`X, Z1, Z2) = α1(X, Z1){1 − α2(X, Z2)}F (X, β );
pr(Y1 = 1, Y2 = 0`X, Z1, Z2) = {1 − α1(X, Z1)}α2(X, Z2)F (X, β );
pr(Y1 = 1, Y2 = 1`X, Z1, Z2) = {1 − α1(X, Z1)}{1 − α2(X, Z2)}F (X, β ).

This implies the likelihood function

L(β , η1, η2) =
∏

[1 − F (X, β ) + α1(X, Z1, η1)α2(X, Z2, η2)F (X, β )]Y1Y2
× [α1(X, Z1, η1){1 − α2(X, Z2, η2)}F (X, β )](1−Y1)Y2
× [{1 − α1(X, Z1, η1)}α2(X, Z2, η2)F (X, β )]Y1(1−Y2)
× [{1 − α1(X, Z1, η1)}{1 − α2(X, Z2, η2)}F (X, β )](1−Y1)(1−Y2).

Under our assumptions, this allows us to estimate parameters for the risk-model and
misclassification probabilities. This improves over current estimators which either force
researchers to erroneously assume that there is no misclassification in the data, that the data
originates from one source, or both. Furthermore, our estimator utilizes more data-based
information to achieve identification, resulting in sounder estimates of the misclassification and,
in turn, event probabilities.11

In sum, our estimator allows researchers using event-based data to accurately test theories on
both the event of interest and (mis-)reporting of these events.12

4 Simulations
Our simulation study is designed to evaluate the performance of estimators under outcome
misclassification. We consider the following five methods:

11 To present some intuition nontechnically, consider the canonical mark–recapture example of attempting to estimate the
number of fish in a pond. If we cast a net only once, the only data-based information we have is how many fish are in
the net. Considering regression models, naïve probit treats this is the complete population of fish in the pond (e.g., no
misclassification), whereas the Hausman et al. (1998) approach attempts to guess howmany fish remain in the pond given
howmany we have captured in the net—both are flawed. Instead, as anyone familiar with mark–recapture has surmised,
we want to “mark” the first catch, release them, and cast the net a second time. Now the number of those fish recaptured
can be used to generate estimates on the total number of uncaught fish remaining in the pond. This, as we see it, is our
estimator, wherewe can usewhether only one ormultiple sources reported on someevent to generate accurate estimates.
See Hendrix and Salehyan (2015) for a discussion on considering event-based data as a mark–recapture problem.

12 Note that the ability of our model to recover accurate estimates of the event probability depends on obtaining accurate
estimates of the misclassification probabilities, that is, in properly specifying the misclassification model. As such,
researchers should consider this specification with the same care they devote to modeling the event itself.
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(1) Naïve Probit: fits a probit model toYsum with event probability pr(Ysum = 1`X ) = Φ(β0 +
β1X ).

(2) Hausman, Constant Probabilities: the approach outlined in Hausman et al. (1998)—
assuming constant misclassification probabilities and exploiting our Assumption 1(b)13—
which fits pr(Ysum = 1`X ) = {1 − π1}Φ(β0 + β1X ).

(3) Hausman with Covariates: our generalization of Hausman et al. (1998) allowing for
nonconstantmisclassification probabilities pr(Ysum = 0`YT = 1,X , Z1, Z2) = γ(X , Z1, Z2) =
Φ(η00 + η01X + η02Z1 + η03Z2), giving event probabilities pr(Ysum = 1`X , Z1, Z2) = {1 −
γ(X , Z1, Z2)}Φ(β0 + β1X ).

(4) Multi-source, Constant Probabilities: our multi-source method detailed in Section 3, but
restricted to use constant probabilities α1(X , Z1) = Φ(η10) and α2(X , Z2) = Φ(η20).

(5) Multi-source with Covariates: our general multi-source method detailed in Section 3 with
α1(X , Z1) = Φ(η10 + η11X + η12Z1) and α2(X , Z2) = Φ(η20 + η21X + η22Z2).

4.1 Simulation design
The data-generating process for the simulations is the following:

• Step I. Take n draws ofX , Z1 and Z2 from a N (0, 1) distribution.
• Step II. GenerateYT from a Bernoulli distribution with success probability F (Xi , β ) = Φ(β0 +

Xi β1), i = 1, . . . , n , whereΦ denotes the CDF of the standard normal distribution.
• Step III. Generate misclassification probabilities using

α1(Xi , Zi ,1) =Φ(η10 + η11Xi + η12Zi ,1), and

α2(Xi , Zi ,2) =Φ(η20 + η21Xi + η22Zi ,2),

then generateYi ,1 andYi ,2

Yi ,1 =Yi ,T (1 − B (α1)) and Yi ,2 =Yi ,T (1 − B (α2)).

• Step IV. GivenY1 andY2, generateYsum usingYsum = 1(Yi ,1 +Yi ,2 ≥ 1).

Across all experiments, we generate N = 1000 data sets (i.e., trials), each with sample size
n = 1000. Our experimental data-generation process nests all the methods detailed above, with
di�erent assignments to the η’s producing each of these as the truemodel. As such, we aremainly
interested in the e�ect of varying thoseparameters, sowe fix β0 = −1 and β1 = 1 in all experiments
(producing pr(Ysum = 1) ≈ 0.30).
We investigate the e�ect of misclassification under two broad sets of experimental conditions

produced from di�erent specifications in Step III:

(1) Nondi�erential misclassification—the misclassification errors α1 and α2 do not depend on
the covariates and are constant (i.e., η10 > 0, η20 > 0, and η11 = η12 = η21 = η22 = 0).14

(2) Di�erential misclassification—the misclassification errors α1 and α2 depend on the event
covariates (i.e., η11 > 0 and/or η21 > 0).

In the next section we provide detailed results from two experiments under these conditions.
In Experiment 1 we set α1 = 0.35 and α2 = 0.2,15 drawing on previous studies which have

13 In general the Hausman et al. (1998) estimator does not require 1(b), allowing for π0 , 0. We evaluated thismethod aswell,
however, found that it failed to converge approximately 80% of the time under our simulated conditions. As such, we do
not report these results.

14 Note that nondi�erential misclassification only requires that η11 = η21 = 0, with η12 and η22 determining whether these
probabilities also vary across units.

15 Continuing with our notation above this is equivalent to setting η10 to−0.3885 and η20 to−0.841, with all other η’s at zero.
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evaluated the extent of misclassification in data of these types, we consider this a moderate
level of misclassification which is likely to be observed by researchers. In Experiment 2,
we set (η10, η11, η12, η20, η21, η22) = (−0.7, 1, 1,−1.4, 1, 1), so that E {α1(X , Z1)} ≈ 0.35 and
E {α2(X , Z2)} ≈ 0.2. This allows us to evaluate distinct e�ects of nondi�erential and di�erential
error under roughly the same rate of misclassification.16

4.2 Results
The results of the simulation study are presented in Table 1, with the bias, standard deviation
(STD), estimated standard error (SE), and mean-squared error (MSE), and 95% coverage
probability (CP) reported.17 The top half, Experiment 1, presents the results of our constant,
nondi�erential error simulations. We see that, as expected, our Multi-source methods (Models 4
& 5) outperform the other methods in MSE terms. Furthermore, the CPs—the proportion of
simulations in which the parameter is contained in the interval estimate—for both closely
reflect the nominal 95% confidence levels. The alternative estimators, on the other hand,
perform noticeably worse. The Hausman with Covariates (Model 3), is obviously flawed when the
misclassification probabilities in the DGP are fixed, with estimates varying wildly from simulation
to simulation. The Naïve Probit and Hausman Constant estimators perform better than this,
but still underperform our proposed estimators. Naïve Probit (Model 1) is only slightly worse
in MSE terms, however, the bias and resultant anti-conservative CPs are troubling, while the
Hausman-type estimator (Model 2) is nearly two-times worse than our estimators in MSE.
While our estimators do perform well, we do not want to overstate the extent of the gains.

In general, the conventional estimation strategies seem to do fairly well if the misclassification
rates are truly nondi�erential. However, this rarely happens in practice as underreporting is
usually systemic, that is, there is a reason why some observations are misclassified and not
others (Schrodt 2012).18 Experiment II, the lower half of Table 1, provides the results from
simulations under these conditions. We observe a substantial degradation in the performance
of the conventional strategies. The Naïve Probit and Hausman Constant estimators have
substantial bias in the slope estimates, with MSE orders of magnitude larger than our preferred
methods. Moreover, the Naïve Probit estimator never(!) recovers the true sample statistic in
any of the simulations (CP = 0.0). As this is the dominant empirical strategy used in political
science this is clearly a problem.19 We see expected gains in the Hausman with Covariates
(Model 3) and degradation in Multi-source Constant, reflecting the accuracy with which they
capture the true data-generating process. Our Multi-source with Covariates method clearly
dominates, with the lowest MSE and most accurate CPs. More importantly, perhaps, is that our
Multi-source with Covariatesmethod is robust to either type of misclassification—i.e., di�erential
or nondi�erential—as it is nearly dominant in both sets of simulations. Thus, researchers
can employ this method when they do not have strong ex ante beliefs over the cause of
misclassification in their data and be confident in the results obtained.
Parameter estimates are o�en not directly the quantity of interest. Instead, researchers are

interested in some transformationof theparameter, suchas themarginal e�ect,which is not equal

16 All simulations were completed in R . The code for our estimator, Multi-source with Covariates, is provided in Online
Appendix B and code for all novel estimations strategies presented—i.e., Methods 3, 4, and 5—will be made available for
public use.

17 All replication materials can be found online at Cook et al. (2016).
18 An analogous problem for missing data may be more familiar to our readers, where the related distinction would be
between datamissing completely at random (MCAR) andmissing not at random (MNAR). When data areMNAR researchers
require a model predicting the missingness in their data, as we need amodel predicting misclassification here.

19 The shortcomings we evidence here would also occur in a logistic regression, themore important consideration is not the
link function but whether the estimator accounts for misclassification. Note that our estimator is easily extended to allow
a logistic functional form, we merely use the probit for easier comparison to the Hausman estimator and evaluation of
correlated outcomes.
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Table 1. Simulation study results.

Method

(1) (2) (3) (4) (5)

Naïve Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/Cov Const Pr w/Cov

Experiment 1: α1 = 0.35, α2 = 0.2

β0 = −1 Bias 0.052 −0.007 −1.674 0.004 0.002
STD 0.058 0.092 8.449 0.063 0.064
SE 0.060 0.092 3.390 0.063 0.064
MSE 0.006 0.009 74.111 0.004 0.004
CP(%) 87.5 92.2 95.8 95.9 95.7

β1 = 1 Bias 0.054 −0.028 −1.368 −0.007 −0.005
STD 0.066 0.111 9.400 0.075 0.078
SE 0.067 0.110 3.022 0.077 0.079
MSE 0.007 0.013 90.137 0.006 0.006
CP(%) 85.7 93.2 93.0 95.5 95.3

Experiment 2: α1 = Φ(−0.7 + X + Z1), α2 = Φ(−1.4 + X + Z2)
β0 = −1 Bias 0.074 −0.663 −0.023 −0.048 0.003

Std 0.051 0.227 0.106 0.060 0.063
SE 0.055 0.175 0.096 0.067 0.063
MSE 0.008 0.490 0.012 0.006 0.004
CP(%) 77.4 3.7 95.8 91.3 95.8

β1 = 1 Bias 0.397 −0.379 −0.035 0.287 −0.010
Std 0.055 0.258 0.158 0.092 0.094
SE 0.057 0.218 0.132 0.079 0.095
MSE 0.210 0.026 0.091 0.009
CP(%) 0.0 56.9 94.0 11.1 96.3

Note: Included in the table is the average bias of the estimator (Bias), the standard deviation of the estimates
across the simulations (STD), themeanestimated standard error (SE), themean-squared error (MSE), and the
coverageprobabilities (CPs)of anominal 95%confidence interval. Theestimationmethodsandexperimental
conditions are detailed in Section 4.

to the reported coe�icient in all but the linear-additive model. As such, we calculate themarginal
e�ect of X for each of the estimators as

∂Y /∂X = Φ{β̂0 + β̂1(µx + σx )} −Φ{β̂0 + β̂1µx}.

The results of both experiments are given in Table 2. For Experiment 1, we see that as in parameter
estimation, all estimators perform quite well in terms of MSE. Naïve Probit has the downward
bias we would expect from attenuation in nondi�erential misclassification, yet the results from
all estimators are fairly encouraging. Experiment II is quite di�erent, here we see substantial bias
in each of the estimators that fails to model the misclassification probabilities as a function of
covariates. Interestingly, we see a large attenuating bias in Naïve Probit and a large inflationary
bias in Hausman Constant, suggesting that rather than solve the problem the Hausman-type
estimator simply introduces a new one. As before, we see that our preferredmethod,Multi-source
with Covariates, provides accuratemarginal e�ect estimates under other experimental condition.
While our estimator performs well under either type of misclassification, two additional issues

may be of concern with real data. First, researchers will o�en not have complete models of
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Table 2. Marginal e�ects in simulation studies.

Method

(1) (2) (3) (4) (5)

Naïve Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/Cov Const Pr w/Cov

Experiment 1: α1 = 0.35, α2 = 0.2

∂Y /∂X Bias −0.030 0.011 −0.038 0.002 0.001
Std 0.023 0.049 0.109 0.027 0.028
MSE 0.001 0.002 0.013 0.001 0.001

Experiment 2: α1 = Φ(−0.7 + X + Z1), α2 = Φ(−1.4 + X + Z2)
∂Y /∂X Bias −0.164 0.119 0.012 −0.106 0.003

Std 0.019 0.070 0.059 0.038 0.036
MSE 0.027 0.019 0.004 0.013 0.001

Note: Included in the table is the average bias of the estimator (Bias), the standard deviation of the estimates
across the simulations (STD), and themean-squared error (MSE). The estimationmethods and experimental
conditions are detailed in Section 4.

misclassification, as such it will be important to know the e�ect of omitted variables in the
misclassification submodels. Second, o�en sourceswill notperfectly reflect Assumption 1(a)— i.e.,
local independence across sources—which was part of the derivation of our estimator above, as
such it will be important to know the small-sample implications of violations of this condition.20

We explore both concerns in an additional series of simulations where we include additional,
correlated unobservables in the generation of the misclassification probabilities:

α (Xi , Zi ,1) =Φ(η10 + η11Xi + η12Zi ,1 + u1),

α (Xi , Zi ,2) =Φ(η20 + η21Xi + η22Zi ,2 + u2),

where (u1,u2)T = Normal(0,Σ ), where Σ is the covariance matrix of a bivariate standard normal
random variable with variance = 1 and correlation ρ, with changes to ρ varying the extent of
the correlation across the sources. We run 51 additional simulations for Experiment 2 with this
modification—evaluating correlations from ρ = −0.5 to ρ = 0.5 in increments of 0.02—capturing
both strong negative correlation (i.e., sources purposefully report on distinct events) and strong
positive correlation (i.e., sources purposefully report on the same events). The results are
illustrated in Figure 1, which provides the CPs across these simulations.
Wesee thatourpreferredmethod,Multi-sourcewithCovariates, consistentlyperformswell even

despite omitted variables in the misclassification equations and high levels of correlation. With
correlation between −0.44 and 0.3 it is the optimal estimator, bested only by the Hausman with
Covariates when the level of correlation becomes very high. This is expected given that under
these conditions, extremely high levels of correlation, there is less additional information from
the second source—they converge toward one another. What is more notable is the persistent
fitness of our estimator across all simulations, indicating that it is robust to typical violations of
Assumption 1(a) one might observe in real-world data like that we consider in the next section.21

20 Strict identification of the parameters, however, does not depend on the maintenance of Assumption 1(a). In extensions
we show that identification with parametric models can be achieved though just Assumptions 1(b) and 1(c).

21 A range of additional simulated conditions were explored including: mixed misclassification, omitted variables in the
misclassification model, multiple predictors in the risk model, equal probabilities of misclassification across sources. We
describe, present, and discuss these additional experiments in Online Appendix C.
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Figure 1. Estimator Performance with source correlation. Curves are smoothed via LOESS. Points or non-
smoothed lines render the same conclusions.

5 State Repression in Africa
As discussed in the introduction, event-based data have been widely used in the literature
on contentious politics. Misclassification is widely believed to be an issue in these studies,
with researchers arguing that such “incorrect misclassification is likely to be systemic rather
than random” (Schrodt 2012, 557). That is, outcome data is likely to su�er from the type
of error observed to generate substantial bias in our simulations. Notably, the literature on
repressionhas generated theories predictingwhenandwherewe shouldbemost likely to observe
underreporting; arguing that high-visibility events occurring in urban centers of economically
developed, less authoritarian regimes aremore likely to be reported (Davenport 2007; Davenport
and Ball 2002). Yet, much of the quantitative literature on repression fails to explicitly account for
the potential bias introduced from underreporting in their statistical analysis. This motivates our
current analysis, where we examine both: (i) the e�ect of misclassification on common predictors
of repression and (ii) analyze whether we find support for those factors thought to produce
reporting bias.
Specifically, we estimate a model of repression in Africa using the set of methods detailed in

Section 4. Our outcome data is taken from SCAD (Salehyan et al. 2012), which generates event
data on forty-sevenAfrican countries using keyword searches of AssociatedPress (AP) andAgence
France-Presse (AFP) news wires. These data are particularly useful for our purposes in two ways.
First, since 2012 events have been recorded as being reported by the AP, the AFP, or both—that is,
there are multiple sources.22 Second, the creators of this data set have discussed the likelihood
of underreporting, utilizing a Lincoln–Peterson mark–recapture method to estimate that 24% of
social conflict events go unreported (Hendrix and Salehyan 2015).23 While mark and recapture
methods prove useful for diagnosing the presence of underreporting, they do not remedy the
resulting bias in subsequent empirical analysis as we aim to do.24

22 Prior to this the SCAD data simply indicate whether or not there were multiple sources.
23 Using the LP estimator, we calculate that 14% of repression events go unreported.
24 If one assumed constant misclassification probabilities the singular estimate of misclassification from mark–recapture
methods could be built into aweighted likelihood, however, when the risk ofmisclassification is a function of time-varying
covariates such an approach is infeasible.
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Therefore, using these data, we generate a binary outcome, Repression, which is coded as
one if either or both of the news wires report on (lethal or nonlethal) repression initiated by
the government or pro-government actors during a state–month, and zero otherwise. For the
submodels in our misclassification estimator, we construct two additional binary variables, one
for events reported by the AP and one for events reported by the AFP. Following the Poe and
Tate (1994) model, we believe repression should be increasing in population, and decreasing
in democracy and GDP per capita.25 We include each as independent variables, with coding
and data sources elaborated in the Online Appendix. Lastly, our estimator requires additional
covariates predicting misclassification, which is unrelated to the true-event probability. Hendrix
and Salehyan (2016) have suggested that nonconflict related news reports may indicate the total
amount of media e�ort devoted to a country and include a country-year average (divided into
quantiles) as a control in their model. Drawing on this, we collect new data on the number of
nonconflict related news reports for each country by the AP and AFP, respectively.26 The values for
each, AP Reports and AFP Reports, are introduced in the submodels predicting misclassification.
Our expectation is that greatermedia e�ort (e.g., higher values) will be negatively associatedwith
the probability of misclassification.
The results from these models are presented in Tables 3 and 4. Table 3 shows the results

from the repression model of each estimator, the outcome of primary theoretical interest in
our illustration. Glancing across the table highlights both (i) the importance of accounting for
misclassification and (ii) how one accounts for misclassification. With the Naïve Probit (Model 1),
we see that both Pop and Demo are significant in their expected directions, with GDPpc positive
and insignificant. The e�ect of GDPpc is inconsistent with the theoretical literature, however, it is
notuncommon in theempirical literature todate.27Wesee that the results fromtheHausmanetal.
(1998) estimator (Model 2) are nearly identical to those from the naïve probit in this analysis. This,
despite the fact that theory would suggest, and the originators of the data set have concluded,
that events go underreported in the data, that is, exactly the setting in which researchers would

Table 3. Model of repression in Africa.

(1) (2) (3) (4) (5)

Naïve Hausman Hausman Multi-source Multi-source

Model Probit Const Pr w/Cov Const Pr w/Cov

GDPpct−1 0.020 0.020 −0.164 0.022 −0.292
(0.062) (0.062) (0.125) (0.072) (0.145)

Popt−1 0.407 0.407 0.314 0.458 0.330
(0.053) (0.053) (0.085) (0.063) (0.095)

Demot−1 −0.655 −0.655 −0.739 −0.757 −0.819
(0.151) (0.151) (0.261) (0.172) (0.315)

Constant −8.011 −8.011 −4.679 −8.568 −3.857
(1.000) (0.994) (1.624) (1.161) (2.063)

N 1092 1092 1092 1092 1092

Note: The estimators are the same as those used in the simulations and detailed in Section 4. The covariates
are the log of GDP per capita (GDPpc), the log of population (Pop), and an indicator if the country is a
democracy (Demo), each lagged by one period.

25 Elaborated and clarified in Poe et al. (1999, 2006).
26 Specifically, we used the Boolean opposites of the SCAD search terms—protest, riot, strike, violence, attack—and counted
the number of (nonviolent) news stories.

27 Hendrix and Salehyan (2016), with a wider sample and additional predictors even finding an unexpected positive and
significant e�ect of the log of GDP per capita.
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Table 4. Models of reporting bias on repression in Africa.

(1) (2) (3) (4) (5)

Naïve Hausman Hausman Multi-source Multi-source

Probit Const Pr w/Cov Const Pr w/Cov

Misclassification model for AP
GDPpc −0.083 −0.280

(0.259) (0.168)
Population −0.006 −0.268

(0.154) (0.106)
Democracy 0.229 −0.386

(0.508) (0.416)
AP Reports 0.018 −0.033

(0.021) (0.008)
Constant 0.001 1.946 0.559 7.947

(0.003) (3.076) (0.148) (2.073)
Misclassification model for AFP

GDPpc −0.203
(0.172)

Population −0.057
(0.121)

Democracy 0.350
(0.402)

AFP Reports −0.086 −0.023
(0.025) (0.006)

Constant 0.005 3.332
(0.181) (2.359)

N 1092 1092 1092 1092 1092

Note: Results produced by the same models estimated in Table 3, partitioned for ease of exposition. AP
Reports& AFPReports are number of nonconflict news stories. To clarify the presentation:Model (1) produces
no estimates of misclassification; Model (2) estimates a single misclassification probability, common to
both sources; Model (3) estimates a misclassification model of the dependent variable, from either source,
using the risk-model covariates and AP Reports & AFP Reports; Model (4) estimates separate, constant
misclassificationprobabilities for the two sources; andModel (5) estimates separatemisclassificationmodels
for the two sources.

turn to this estimator.28 TheMulti-source Constantmodel also does not a�ect much change, with
all results roughly the same as in Models 1 and 2.
None of this is surprising given that our belief is that the misclassification is systemic. As such,

we turn to Models 3 and 5 where the misclassification probabilities are nonconstant, predicted
by the same covariates included in the repression model. We see sizable di�erences in Model 3,
Hausman with Covariates, with an increase in the constant o�set by decreases in both Pop and
Demo. That is, the base-line risk of repression ismore likely thanwhat is evidenced in our reported
sample due to misclassification, which also appears to have biased the e�ect of the predictors.
Similar, if more pronounced, results are found in Model 5, ourMulti-source with Covariatesmodel,
with fairly dramatic shi�s to all three predictors and the constant. Most notably, GDPpc becomes
negative and is now statistically significant, consistent with theoretical expectations. We also see
the negative e�ect of Demo increases and the positive e�ect of Pop increases. What does this

28 We believe this to be an artifact of the numerical instability of the Hausman-type estimator, which has been found
elsewhere before (Hug 2009).
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mean? It suggests misclassification was biasing the e�ect of GDPpc, Pop, Demo as repression
in wealthy, populous democracies is more likely to be reported on, causing us to erroneously
conclude that repression is actually more likely in those environments than it is.29

We can examine these causes of reporting bias more explicitly in Table 4, which provides the
misclassification probabilities (andmodels) where they are estimated.30 Focusing onModel 5, we
observe two main findings of note: first, the AP is more likely to su�er from underreporting than
AFP, as indicated by their constants; second, ourmeasures for “media e�ort” are significantly and
negatively related to misclassification, that is, the more nonviolent news stories reported on a
region by the AP and AFP, the more likely they are to accurately report an incident of repression.
We do not find significant support for the repression-model predictors in this analysis, however,
given that these should predict media e�ort, not just misclassification, this null finding makes
sense as we already account for media e�ort explicitly as an additional predictor.

6 Applications & Extensions
To introduce and describe our approach we have focused our discussion on fixed observational
unitswith only twobinary-event indicators (e.g., reports) of a binary outcome, however, particular
applications of concern to applied researchers may deviate from this in several ways. Therefore,
we detail some of the more likely departures here and discuss how our method can be utilized
under a variety of these contexts.
First, data are o�en compiled from more than two underlying sources. As alluded to in

footnote 9, our method can be easily amended to handle these additional sources by simply
expanding the joint likelihood. In themostgeneral setting, suppose that thereareM (≥2) reporting
sources. Let the binary-outcome variable from the j th source be Y j , j = 1, . . . ,M , and YT be the
true indicator of an event. Let X be a covariate that is associated with the true-event indicator,
and Z1, . . . , ZM be the source-specific covariates. Maintaining all earlier assumptions, define
source-specific false negative probabilities, αj (X, Zj ) = pr(Y j = 0`YT = 1, X, Zj ), for j = 1, . . . ,M ,
and pr(YT = 1`X) = F (X, β ). Then the joint probability of Y1, . . . , YM given X, Z1, . . . , ZM is

pr(Y1 = y1, . . . , YM = yM `X, Z1, . . . , ZM )

= pr(Y1 = y1, . . . , YM = yM `YT = 0, X, Z1, . . . , Zm )pr(YT = 0`X, Z1, . . . , ZM )

+ pr(Y1 = y1, . . . , YM = yM `YT = 1, X, Z1, . . . , Zm )pr(YT = 1`X, Z1, . . . , ZM )

= {1 − F (X , β )}I (y1 = · · · = yM = 0)

+α
1−y1
1 (X, Z1){1 − α1(X, Z1)}y1 × · · · × α1−yM

M (X, ZM ){1 − αM (X, ZM )}yM F (X, β ),

for yj = {0, 1} and j = 1, . . . ,M . Therefore, the likelihood function of the observed data over N
independent observations is

L =
∏

[{1 − F (X, β )}I (y1 = · · · = yM = 0)

+ α
1−y1
1 (X, Z1){1 − α1(X, Z1)}y1 × · · · × α1−yM

M (X, ZM ){1 − αM (X, ZM )}yM F (X, β )
]
,

29 Our contention is not that this is a perfect theoretical model of state repression. We readily admit its limitations as a
more general model of repression, as we are constrained (due to temporal coverage) from including several additional
predictors of repression that onewould commonly find in the literature. However, the confined focus of our spatial sample
(i.e., African countries) of our analysis helps reduce the need for extraneous covariates to gain balance (Achen 2002). In
addition, the main purpose of our analysis is, first and foremost, to illustrate the extent to which estimates are sensitive
to misclassification in the dependent variable. While additional covariates may alter some of the parameter estimates, it
would not change this fundamental reality as it would not cause outcomes currently contaminated to become correctly
classified.

30 Note that the constant inmodel 2 refers to the constantmisclassification probability estimate for both sources, not simply
theAP responses as the table layoutmay suggest. That is, theHausmanestimator hereonly provides a single suchestimate
given that it does not account for the multi-source nature of the data.
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where the outer product is over N . As always, the maximum likelihood estimator of the model
parameters can be obtained by maximizing the logarithm of L.31

This shows how our estimation strategy can easily be tailored for a general number of sources
(e.g., 3, 5, 8 . . . ) in a straightforward way. However, some event data sets are compiled from
hundredsoreven thousandsof sources (e.g., ICEWS,GDELT,Phoenix),whichwould taxourmethod
and result in a badly behaved likelihood; as the information in each “cell” of the joint likelihood
becomes increasingly small. A partial solution for these data may be to classify the many sources
into fewer clusters (e.g., international news agencies, national newspapers, local newspapers)
which share common, within-cluster, features in the scope and nature of their coverage. Then it
is reasonable to assume that the misclassification probabilities vary across the clusters but not
much within a cluster, reducing the number of parameters and permitting estimation as before.
As an example, consider the Armed Conflict Location & Event Dataset (ACLED), a widely used

dataset on substate violent events.32 These data are drawn from a variety of sources—ranging
between 70 and 232 sources from 1997 to 2012—which, at first pass, might suggest that our
approach is not feasible. However, the top-10 sources account for nearly three-fourths of the
events in the dataset, suggesting diminishing returns from the collection of the additional 220+
sources.33 In contexts where the collection of these additional sources of data is more costly or
onerous, there is a value in constraining the number of sources and then employing a statistical
correction such as ours. Additionally, the reporting sources naturally classify into three types
(i.e., international, national, and regional), with the total number of sources in each African
country varying from 8 to 100. We believe it is reasonable to think of each reporting type as
a “macro-source” with common misclassification probabilities. For example, as in our paper,
international sources are likely to be a�ected by the amount of reporting coverage generally on
a state and the distance to a bureau o�ice. Whereas whether any regional sources reported a
true event is more likely to be a function of the number of such sources available to ACLED for
that state, which vary considerably, and the degree of press freedom in that state. Considered in
this way, we have three observed “reports”—YINT = I (Yint1 + · · · + YintK ≥ 1),YNAT = I (Ynat1 +

· · · + YnatK ≥ 1), andYREG = I (Yreg1 + · · · + YregK ≥ 1)—each with respective misclassification
probabilities—αINT = Φ(X ,Dist, Coverage), αNAT = Φ(X ,No. of National Sources, Press Freedom),
αREG = Φ(X ,No. of Regional Sources, Press Freedom). Estimation would then proceed as given in
the three-source variation of the likelihood detailed above.34

Beyond the issues on the number of reporting sources, the questions asked by researchers
usingmedia-reported event datamaydi�er fromwhatwehave introducedhere. First, researchers
may be interested in event counts (e.g., the number of protests, terrorist attacks, human rights
violations), rather than thebinaryoutcomesweconsiderhere. Thederivationofourmethodabove
does not apply to these applications, however, our basic likelihood framework could be used to
address such problems. That is, given a parametricmodel for the true-event-generating process—
which we o�en assume in political science—and a parametric model for the misclassification, we
can form the likelihood function of the observed data. Let Y , YT and X be the reported count,
true count, and a set of covariates, respectively. Let p(yT`X, β ) = pr(YT = yT`X, β ) be the true

31 A greater number of sources may further allow for researchers to introduce explicit correlation parameters for a subset of
the reporting sources.

32 To avoid repetitive citations we note here at the outset that all descriptive statistics presented regarding the ACLED
data come from the “ACLED Data Sources,” a 2012 working paper linked through in the ACLED event codebook
which describes the generation of the data. No individual authors are noted in the text which is available at
http://www.acleddata.com/wp-content/uploads/2014/12/ACLED_Sources-Working-Paper_July-2012_updated.pdf

33 Even with many reporting sources, underreporting in social events is still likely to persist. ACLED finds a strong positive
correlation between the number of sources and the number of events, even as we increase from 100 to 200 sources,
suggesting even with an exhaustive set of reporting sources some underreporting is likely to remain.

34 There is no information loss from our aggregation into clusters over conventional approaches given that the convention
in the ACLED data is to aggregate all reports into a single binary outcome.
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data-generatingmodel andm(y `yT, X) = pr(Y = y `Y = yT, X, γ) be themodel formisclassification.
Then one can form an induced model for the reported response Y given X, pr(Y = y `X, β , γ) =∑
yT m(y `yT, X, γ)p(yT`X, β ), write the likelihood, and proceed for estimation of β , themainmodel

parameters.35

Second, researchers may be interested in using media-based data when determining the
sample itself (e.g., studies on the duration of conflicts, whether protests turn violent). In these
analyses, underreporting would result in sample-selection bias—a failure to include a set of true
observations in the sample—rather than, or in addition to, misclassification in the outcome. As
discussed andpresented here ourmethoddoes not readily address this issue, it is better suited for
analyses with fixed observational units. However, despite the well-known methods for handling
selection, both generally and with binary-outcome data (Maddala 1983; Heckman 1977), none
deals with the multiple source issue we have discussed here. As such, we are currently working
on amulti-source selection model which would allow for researchers to address these problems.

7 Conclusion
Traditionally researchers devote less attention to measurement error in the outcome, however,
here we have highlighted the severity of the bias induced by di�erential misclassification in
binary outcomes. Our simulations show that misclassification can produce substantial bias when
researchers employ either: (i) strategies which assume nomisclassification or (ii) strategies which
assume nondi�erential misclassification. Further, we show that unbiased estimates can only
be obtained by directly estimating a model of misclassification and weighting the risk-model
probabilities accordingly.
The threatof systematicmeasurement error fromunderreporting iswidelydiscussed inapplied

research using media-generated event data, yet little work has proposed general strategies to
remedy this potential bias.36 We show how researchers possessing more than one source of
data-generating information can achieve this desired result. Specifically, we derive an estimator
for applications inwhich researchers have at least two sources of potentiallymisclassified data on
a single outcome of interest. Under few assumptions, our estimator returns unbiased estimates of
the risk probability and allows for source-specific misclassification estimates.
Specifically, we have focused on how our strategy can aid researchers using event-based data

comprised from multiple reporting outlets. To our knowledge, no current estimator—in political
science, sociology, economics, or statistics—accommodates both multiple sources of reporting
data and potential misclassification.37 Given that many of the first wave of recommendations
to ameliorate reporting bias consisted of gathering data from additional sources, our estimators
should reflect this feature of the data-generating process. Yet, as we note, even additional sources
areunlikely to result inanuncontaminateddata set,meaning that further statistical corrections for
misclassification will o�en be required. As such, we provide a unified method suited for multiple
sources of potentially misclassified data. The results show the fitness of our estimator under
either di�erential or nondi�erentialmisclassification, suggesting it couldbepreferred as a general
method when researchers are unaware of the nature of the misclassification in their data.
We illustrated the utility of this method in a model of state repression in Africa, observing

that predictor e�ects change dramatically when misclassification is ignored. We believe that
similar resultswill be obtainedwhen researchers utilize ourmethod in studies of protest behavior,
civil war, political violence, and so forth. In future research, we plan to extend on the method

35 Note that to estimate β , we need γ parameters to be known, and the latter can be estimated from validation data where
both the true responses and the reported responses are available for a smaller subset of the original data.

36 A notable exception is Hug (2009).
37 The most similar strategy to ours is found in the occupancy modeling literature in ecology, where zero-inflated binomial
mixture models are used to estimate detection and occupancy are jointly in biological survey studies (MacKenzie et al.
2006).
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introduced here in two ways. First, deriving a semiparametric e�icient estimator for the class of
problemsoutlined above. Second, consider caseswhere the sample itself is defined by potentially
misclassified event-based data (e.g., protests, politically excluded ethnic groups).

Funding
This work was supported by a grant from the National Cancer Institute [U01-CA057030 to
R.J.C.] and a post-doctoral fellowship from Conselho Nacional de Desenvolvimento Científico e
Tecnológico [201192/2015-2 to B.B.].

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2016.13.

References
Abrevaya, Jason, and Jerry A. Hausman. 1999. Semiparametric estimation with mismeasured dependent
variables: An application to duration models for unemployment spells. Annales d’Economie et de
Statistique 55/56:243–275.

Achen, Christopher H. 2002. Toward a new political methodology: Microfoundations and ART. Annual
Review of Political Science 5(1):423–450.

Carroll, Raymond J., David Ruppert, Leonard A. Stefanski, and Ciprian M. Crainiceanu. 2006.Measurement
error in nonlinear models: a modern perspective. Boca Raton, FL: CRC Press.

Carroll, Raymond J., and Shane Pederson. 1993. On robustness in the logistic regression model. Journal of
the Royal Statistical Society, Series B 55:693–706.

Cook, Scott, Betsabe Blas, Raymond Carroll, and Samiran Sinha. 2016. Replication data for: Two wrongs
make a right. doi:10.7910/DVN/92GMLB, Harvard Dataverse.

Copas, J. B. 1988. Binary regression models for contaminated data. Journal of the Royal Statistical Society,
Series B 50:225–265.

Davenport, Christian. 2007. State repression and political order. Annual Review of Political Science 10:1–23.
Davenport, Christian, and Patrick Ball. 2002. Views to a kill exploring the implications of source selection in
the case of Guatemalan state terror, 1977–1995. Journal of Conflict Resolution 46(3):427–450.

Earl, Jennifer, AndrewMartin, John D. McCarthy, and Sarah A. Soule. 2004. The use of newspaper data in the
study of collective action. Annual Review of Sociology 30:65–80.

Hausman, Jerry A., Jason Abrevaya, and Fiona M. Scott-Morton. 1998. Misclassification of the dependent
variable in a discrete-response setting. Journal of Econometrics 87(2):239–269.

Heckman, James J. 1977. Sample selection bias as a specification error (with an application to the
estimation of labor supply functions).

Hendrix, Cullen S., and Idean Salehyan. 2015. No news is good news: Mark and recapture for event data
when reporting probabilities are less than one. International Interactions 41(2):392–406.

Hendrix, Cullen S., and Idean Salehyan. 2016. A house divided threat perception, military factionalism, and
repression in Africa. Journal of Conflict Resolution (forthcoming).

Hug, Simon. 2003. Selection bias in comparative research: The case of incomplete data sets. Political
Analysis 11(3):255–274.

Hug, Simon. 2009. The e�ect of misclassifications in probit models: Monte Carlo simulations and
applications. Political Analysis 18(1):78–102.

Hug, Simon, and Dominique Wisler. 1998. Correcting for selection bias in social movement research.
Mobilization: An International Quarterly 3(2):141–161.

Imai, Kosuke, and Teppei Yamamoto. 2010. Causal inference with di�erential measurement error:
Nonparametric identification and sensitivity analysis. American Journal of Political Science
54(2):543–560.

Mackenzie, Darryl I., James D. Nichols, J. Andrew Royle, Kenneth H. Pollock, Larissa L. Bailey, and James E.
Hines. 2006. Occupancy estimation andmodeling: Inferring patterns and dynamics of species occurrence.
San Diego, CA: Elsevier Academic Press.

Maddala, Gangadharrao S. 1983. Limited-dependent and qualitative variables in econometrics.Number 1.
New York: Cambridge University Press.

Poe, Steven C., and C. Neal Tate. 1994. Repression of human rights to personal integrity in the 1980s: A
global analysis. American Political Science Review 88(4):853–872.

Poe, Steven C., C. Neal Tate, and Linda Camp Keith. 1999. Repression of the human right to personal
integrity revisited: A global cross-national study covering the years 1976–1993. International Studies
Quarterly 43(2):291–313.

Scott J. Cook et al. ` Addressing Underreporting in Binary Data fromMultiple Sources 239

https://doi.org/10.1017/pan.2016.13
https://doi.org/10.7910/DVN/92GMLB


www.manaraa.com

Poe, Steven C., Rost Nicolas, and Sabine C. Carey. 2006. Assessing risk and opportunity in conflict studies: A
human rights analysis. Journal of Conflict Resolution 50(4):484–507.

Salehyan, Idean, Cullen S. Hendrix, Jesse Hamner, Christina Case, Christopher Linebarger, Emily Stull, and
Jennifer Williams. 2012. Social conflict in Africa: A new database. International Interactions 38(4):503–511.

Schrodt, Philip A. 2012. Precedents, progress, and prospects in political event data. International
Interactions 38(4):546–569.

Schrodt, Philip A., and Deborah J. Gerner. 1994. Validity assessment of a machine-coded event data set for
the Middle East, 1982–92. American Journal of Political Science 38(3):825–854.

Strange, Austin M., Bradley Park, Michael J. Tierney, Andreas Fuchs, Axel Dreher, and Vijaya Ramachandran.
2013. China’s development finance to Africa: A media-based approach to data collection. Center for
Global Development Working Paper No. 323.

Trumbore, Peter F., and ByungwonWoo. 2014. Smugglers blues: Examining why countries become narcotics
transit states using the new international narcotics production and transit (INAPT) data set. International
Interactions 40(5):763–787.

Weidmann, Nils B. 2014. On the accuracy of media-based conflict event data. Journal of Conflict Resolution
59(6):1129–1149.

Weidmann, Nils B. 2016. A closer look at reporting bias in conflict event data. American Journal of Political
Science 60(1):206–218.

Woolley, John T. 2000. Using media-based data in studies of politics. American Journal of Political Science
44(1):156–173.

Scott J. Cook et al. ` Addressing Underreporting in Binary Data fromMultiple Sources 240



www.manaraa.com

Copyright of Political Analysis is the property of Cambridge University Press and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email articles for
individual use.


